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AERODYNAMIC EFFECTS OF METEORITES. A SPECIFIC CASE®

By K. P. Stanyukovich

Meteor bodies begin to experience an intense luminescence and
braking at altltudes of the order of 100 kilometers and lower. At
these altitudes, the length of the free path of atmosphere molecules
is measurable in centimeters and millimeters, and this considerably
exceeds the usual dimensions of meteor bodies. That is why discrete
molecule collisions with a meteor body may be considered in the study
of their motion. At high velocities of meteor body motion (18 to
20 km/sec), every colliding molecule knocks out & considerable number
of atoms or molecules from the meteor body crystal lattice and provokes
some sort of microexplosions at its surface. At the same time, not
only the evaporated mass, but also a simply-fractioned mass consisting
of a group of the lattice bound particles is being ejected from the
surface of the meteor body. (See refs. 1 and 2.)

The ejection speed of the mass M 1s lower than the thermal mass
(that 1s, it is lower than the speed corresponding to evaporation
temperature), while the quantity of motion (momentum) I, or the cor-
responding "reaction" impulse of recoll is greater than at ejection
of only a gaseous mass, inasmich as I = 4&@, where E 1s the ejection
energy (ref. 3). A similar process leads to a higher deceleration value
or to the increase of the dimensilonless coefficient of resistance.

Let us write the conservation of momentum and energy (in a system
of coordinates in which air is at rest), as follows:
d(Mu) + up®am + up®aM (1)

a(Mu?) + uy%am + 2dF,* = u,2aM (2)

Here M 1s the mass of the meteor body, m 1s the mass of mole-
cules of the atmospher? colliding with the meteor body, and u is the
meteor body veloclity; wu; and uo are the speeds of divergence of

*Pranslation of "Ob odnom effekte v oblastl merodinamiki meteorov."
Izvestiya Akademii Nauk SSSR, Otdeleniye Tekhnicheskikh Nauk, Mekhanika
1 Mashinostroyeniye, no. 5, 1960, pp. 3-8.



air molecules and lattice "particles," respectively, from the surface
of the meteor body, u;© and u20 are the velocities of the same,

projected normal to the direction of flight, ard Eb* is the intrinsic
energy acquired by the meteor body, which partly changes into radiation.

If, at time of impact,

Hrg) > = (5)

where €p 1s the mass density of energies of the meteor body crystal

lattice (density of evaporation energy), a vapcrization of a certain
quantity of lattice particles will take place.

The evaporation will end under the following conditions:

L uk2=€ Q,:Eg'.\

where p 1is the molecular weight of the lattice, and Hg 1s the molec-
ular weight of the atmosphere.

Therefore, the evaporated mass will be determined by the expressicn,
Mje, = %m(u2 - uk2) = %mu2 - (1 + a)zmek
Let us write, for simplicity of notation, dM =M; dm = m. Hence
Mg = mlBE - (1 + q)? (1)
1 2€k
The evaporated mass will be endowed with aa energy:
E' = 1my® = (1 + a)mey (5)

The product "gas" will be endowed with an energy:
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The mean energy density will be:
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Aside from "evaporation" of the lattice in a certain area, it will
be simply breasking up in the area adjacent to the evaporated zone.

Let €* be the minimum density of energy at which this phenomenon
still takes place; then, the total mass Mp of the deformed lattice
will be determined by the relation

_E, -8
Mn+m—-T

provided € > e*, where AE are the losses of energy serving the partial
destruction and deformation of the lattice, while the following may be
written

LE = n(My - My)ex

where the factor 1 <1 shows what part of energy is irreversibly
expended on the deformation of the lattice.

We definitely may write that



Mn+m=[§9+q(Mi+m2Jl—$W (8)

From equations (4), (6), and (8), we have

(12 cyTy (ué! €
Mo = =S — - 1+ a)?) -1 LEE_ (14 a)?) 4 (1 + 02k
1+ 7 2¢) ne* \2¢y e*
(9)
with n =0 when € =%, and n =17,<1 when e*¥ <ZE,

0

It may be estimated that the difference of velocities wu} - u = vy,

where v; 1is the speed of escape of atmosplere molecules from the meteor
body; it is determined by the molecule thernal velocity

S i S Yol S (10)

where T;* 1s the atmosphere molecule "temrerature," not equal to the
temperature of evaporation.

The difference of the velocities wup - u = vp, where v, 1is the

velocity of departure of lattice particles from the surface of the
meteor body; it is determined by the relaticn

V22 Eb - AE
2 m+ My

= g% (11)

The velocity of particle departure, in the case of evaporation
only (without taking into account the additional fractioning), will
be determined by the relation

2
Yoi | ¢
2
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(12)

Now it 1s necessary to establish the relationship between the
magnitudes ulo and uy® and the magnitudes u; and us.



For a large number of collisions, the particle departure velocity
projected normal to the surface of departure will be:

*  *
Vi,2 T V1,2
The velocity ui 5 will be:
2
o = - *
ug o =ut KVT,E U+ KRV o (13)

For an isotroplc departure in the hemisphere «k* %, the coeffi-

cient k depends on the shape of the body. Since &k = k* = % for a

spherical body, for a cone with an angle 6 at its apex, k = sin 8;
for a plane, xk =1, and so forth. Therefore,

ul’2 kSR (1)

Let us take advantage of the expressions

dm = Spudt aM = -dmf(u) (15)

where § 1is the surface of the meteor body cross section,

£(u) = _1_[(,] + &T&Xﬁ - (1 + cz,)2> + K1+ )2 - 1] (16)
1+ HET/\2€y, €

Transforming equation (1), we find that
0 /1 O
u
MW = g5ou? 2L 4 p(u) (2 1 g (17)
dt u u
The usual aerodynamic notation calls for

g - oo’ 02)



Comparing equations (17) and (18), we find that

o - 280 (‘12— ; 1“)f<u>_} - ex(u) (19)

Lu u

Transforming equation (19), we may write that

cx 2[; + ﬁEﬁ(vl - vgf(u)i]

2 + &y + vpi(u)] (20)

Substituting the values of velocities, we finally obtain

RT{ \lge* RT{ wd 02
x=E x[\/(k T n, 1+ {(ﬂ " - l)_le*><2€k (1 +a) )

+§u+@2-ﬂ (21)
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We then shall have

- R [ T

With u2 > € > €*, and neglecting the secondary terms, we shall

obtain
RTju2
=2+ —— 2
x \Je* [ 20e:I (23)

Assuming (for iron)
RTy RTy
(k - 1Jp DO

e* = =6 X 1o9§§5 (T1 = 3,000°) ~ 7 x 1010 £I8

gr
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we shall cotain
cx = 2 + 0.16 X 106[§.+ 2. x 1o-l2ﬁ} (2k4)

The values cy calculated after this formula for certaln values u
expressed in kilometer/sec are as follows:

u = 10 20 30 4o 50 60 70 80 90 100
c = 3.8 3.5 3.6 3.9 k.o 4,5 4.9 5.3 5.6 6.0

With u = 20 km/sec, the function cy(u) has a minimum cy = 3.46. 1In
the general case c¢yx has a minimum with

* 2
w2 1 )2 4 (ex/" WL+ ) -1 .\ 1+ [ RTy
2ex RTy1 RT3 Vé(k - 1)p_e*
ot — T]+———; a
(k - 1)ue® (k - 1)ue
(25)
The value of the shock impulse is
AT = -MAu = Amucy (Am = SpuAt) (26)
On the basis of equation (21), this expression may be written in the
form
AT = Am[?u + a + bu?] (27

a = K I BTy +\[2€* ril.{.(l+a,)2 -1 - (l+a)2(~q+—£i——)]

(k - Lue®

b = K y2e¥* n o+ RTi
2€i (1 + 1) (k - 1)ue*



The magnitude AT increases with the increase in velocity. For
great velocities

AL =~ bAml ~ LE,

where AEy 1s the power of the impact. We thus reach the known con-

clusion, that in case of an impact with explosion, the quantity of
motion 1s proportional to the energy of the impact (ref. 5).

However, the relationship factors (eq. (27)) differ somewhat from
a similar relationship for the solid-body impact, inasmuch as a some-
what different mechanism of lmpact tekes place in this case than at
discrete molecule impact. (The gas produced has a high temperature,
and the substance evaporates less, a then becoming smaller.)

It should now be noted that with molecule impact at speeds lower

than those provoking "evaporation,” vo =0 and cy = 2ulo/u; further-
more, u;° = k®u + k*kvy, where for discrete collisions k° =1, for

a compact medium, k© <1 (k© = k) and it depends on the form of the
body and on flowing-around conditions. Thus,

v v
cx = 2(k° + YY) = 260 + kel & |2 4 UL K (28)
u u u

In case of elastic impact,

vy =u and c, = b«

In case of compact medium collision wita high velocities, a flowing-
around will teke place, and this will reduce the reactive force of
departing lattice particles. But the stabilized evaporation regime will
also lead to the increase of cyx 1n comparison with a flowing-around
without evaporation. The effective value of the transverse cross sec-
tion S will then somehow increase, and this leads to the increase of
resistance. It may then be estimated that

u© = n(u + no*ul) u = u + nno*u2 (29)

where the magnitude k0¥ < g¥* = %, and it will depend on conditions of
flowing-around.

This problem 1s extremely complex, and Lt requires a special
complementary solution.

o3
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It must be particularly noted that at very high velocities, even
the force of resistance F = u’.

The dependence of cy on u brought forth, makes sense, as we
have shown, even at greater impact velocities than . At smaller
impact velocities, it will be almost elastic. It is interesting to
note that if cy = 4 in the case of an absolutely elastic impact against
a surface, in the case of explosive phenomena c¢yx has a comparable and
even larger value, in spite of the fact that the impact on the surface
is not elastic. That is why similar "velocity" collisions are con-
ditionally, somehow, superelastic.

During the analysis of the dependence cyx = cx(u), it 1is indicated
to take into account that at impact velocities of the order of 10 to
15 km/sec, it is necessary to make use of a more precise general expres-
sion (eq. (21)). Then the minimum c, will be considerably weaker; it
will generally disappear, and an almost smooth increase with velocity
may be observed.

Let us now take advantage of equation (2). After transformations,
we arrive at the following expression:

uulo - 1/21112
£(u)

_ Y
dM

uup® - -:2L—(u2 + upl) +

2
Vo 1/2u8 - (uvi(l - x) + 1f2v(?
- <uv2(l - x) + 5 >-+ / ( 2O / ) (30)
Inasmuch as

*
- dj; = ex + ne¥(Mp - M1) = 2€y

it is possible to determine the values Vi and Ti* from equation (30),
the value Ti* being close to the value Ti'

Let us now compute the law of decrease of meteor body mass and
velocity as a function of atmosphere pressure.

Let us assume that the meteor body penetrates the atmosphere at
an angle @, counting from the normal. We then have

dm = Spudt = Spdx = -Sp cos @ dh = %cos ¢ dp (dp = -gpdh) (31)
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where dx is the element of the path, dh is the altitude variation, a

and p 1s the pressure.

We have
c
M3 - . Xgoyue dM = -dnf(u)
dt 2
where
_ a _ 2
cx = 2 + St bu f(u) = a¢, + bou

_ 1 /g RTy4 _ _b
"0 " el ) %0

By excluding dm, we shall have the equation

du f{u
u 1/2cy

il

d In M

ag + bou2

= du
T 1/2(a + bu?)

with the initial condition

M

1]

My for u = ug

The solution of this equation is

2
2b
M go tu+ o o
— = ex> Y(u,up)
MO %a + uo + lbu 2
2770

2 \Jag - 2bg(2 - ab) /b2
%0 0 /b (’:chtanpg—"l - arc tan

¥(u,m0) = IS =1

+ 20y - up)

b

(32)

(33)

(34)

(35)

buy + l)

Qab -1
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We further have

cos @ dp _ M daM
g T T sf(u) T T s(eg + bou) (36)

Inasmuch as, for a body of any shape

ggx_ = 2825 /?

where A 1is the dimensionless parameter depending upon the shape of
the body and its revolving in motion (for a uniformly rotating sphere)

equation (35) has the form

cos @ dp _ _ aml/> 2/3 - -
. (a0 + Do) A® M=My for p =0 (37)

Teking into account equation (34), we have

o _amt/3

u
meg, . [l g, (50
gA52 3 L ag + bou

Knowing the velocities for the given altitudes, it is possible to
find p = p(h), and then M = M(h).

In conclusion, let us point out that for velocity impacts, the
magnitude cx 1is greater than the general theory predicts. That is
why, for the given deceleration, the density of the atmosphere must
be several times lower than was earlier calculated by means of meteor
data.

Translated by André L. Brichant,
Technical Information and Educational Programs,
National Aeronautics and Space Administration.
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